Colloids in Russia: Have Plutonium, Will Travel

Air Date: 10/26/2006
Source:
Scientific American
Creator:
David Biello
Air/Publish Date:
10/26/2006
Event Date:
10/26/2006
Resource Type:
Article
Copyright:
n/a
Copyright Date:
2006
Clip Length:
-

This 2006 "Scientific American" article reports on findings that particles of radioactive waste -- uranium, plutonium and other actinides -- can travel through groundwater by attaching themselves electrostatically to iron oxide particles and other colloids plentiful in groundwater. Source: Scientific American, October 26, 2006

Colloids in Russia: Have Plutonium, Will Travel

By David Biello October 26, 2006

Among the list of environmental disasters created by Soviet central planning, Mayak must rank high. Commissioned as a plant in southern Russia to manufacture plutonium for bombs in 1948, it soon segued into a long life as a reprocessing center for nuclear material from reactors and decommissioned weapons. But Mayak, or "beacon" in Russian, created its own radioactive waste as well--uranium, plutonium and other actinides--and, at least in the beginning and possibly well into the 1950s, dumped them into surrounding waterways, including the now dry Lake Karachai as well as two adjacent rivers: the Techa and Mishelyak. "If you need a well-contaminated site, it's a dream come true," deadpans Rod Ewing, a nuclear materials scientist at the University of Michigan. "They put a lot of actinides right into the groundwater."

Ewing's Russian colleagues, led by Alexander Novikov of the Russian Academy of Sciences, sampled the groundwater taken from wells up to four kilometers from the scene of original contamination, where radioactivity levels reach roughly 1,000 becquerels (nuclei decaying per second) per liter. Even at that distance, the researchers still measured 0.16 becquerel per liter. Because uranium and plutonium are heavy elements and have low solubility in water, some scientists had expected such contamination to be relatively immobile. Yet, at Mayak, the contamination had spread at least three kilometers in just 55 years. How?

Ewing and his American colleagues used imaging to confirm that the radioactive materials were hitching a ride on colloids--nanoscale particles smaller than one micrometer--specifically, iron oxides present in the groundwater. "These are actual mineral fragments carried in the water," Ewing explains. They are grabbing onto "the uranium and plutonium and carrying it some kilometers away." These iron oxide particles--and other colloids--typically have a negative charge, and the positively charged actinides simply attach to their surfaces electrostatically. And the actinides don't dissolve off the particles, either: "It stays with the solids and travels with them even though the concentrations in solution are low enough that if it was a plutonium solid you would have expected it to dissolve," Ewing notes.

Confirming that actinides can travel on colloids is but a first step. "It further corroborates our understanding of plutonium in the subsurface: it is colloidal, it does move, it's not immobile," says Annie Kersting, a geochemist at Lawrence Livermore National Laboratory. "If you found it there, that's not the endpoint that's just where they put their well. It would be nice to come up with some boundaries on transport concentrations." That work remains critically important for determining how any kind of nuclear repository, such as Yucca Mountain in Nevada, might behave over time as well as for assessing contamination at sites in the U.S. and worldwide.

And iron oxide particles may just be the first transporting colloid that has been clearly identified. Humic acid--an organic complex--and a host of other colloids might serve a similar purpose, as recent research at Rocky Flats in Colorado has shown. "This is a dilemma because it's really difficult; in groundwaters, colloids are ubiquitous," Ewing notes. "It's bad luck that they can be transportation vectors for some of these actinides." In that case, Mayak may serve as a beacon--albeit one of warning--after all. "It's important to look at the geochemistry of the environment to help us in our understanding of what exactly is going to move that plutonium," Kersting adds. "But we need to get away from this idea that plutonium doesn't move, because it does."

Close NBC Learn

Choose your product

NBC Learn K-12 product site
NBC Learn Higher Ed product site

For NBC Learn in Learning Management Systems please log in to your institution's Learning Management System web site and click "Browse NBC Learn".
For further assistance, please contact our NBC Learn Support Team and we'll be happy to assist you.

Start Your Free
day
Day Trial!
Close NBC Learn

FILTERING

If you are trying to view the videos from inside a school or university, your IT admin may need to enable streaming on your network. Please see the Internet Filtering section of our Technical Requirements page.

DVDs AND OTHER COPIES

Videos on this page are not available on DVD at this time due to licensing restrictions on the footage.

DOWNLOADING VIDEOS

Subscribers to NBC Learn may download videos and play them back without an internet connection. Please click here to find out more about subscribing or to sign up for a FREE trial (download not included in free trial).

Still have questions?
Click here to send us an email.

Close NBC Learn

INTERNATIONAL VISITORS

The Science of the Olympic Winter Games videos are only available to visitors inside the United States due to licensing restrictions on the Olympics footage used in the videos.

FILTERING

If you are trying to view the videos from inside a school or university, your IT admin may need to enable streaming on your network. Please see the Internet Filtering section of our Technical Requirements page.

DVDs AND OTHER COPIES

The Science of the Olympic Winter Games is not available on DVD at this time due to licensing restrictions on on Olympic footage.

DOWNLOADING VIDEOS

Subscribers to NBC Learn may download videos and play them back without an internet connection. Please click here to find out more about subscribing or to sign up for a FREE trial (download not included in free trial).

Still have questions?
Click here to send us an email.

Close NBC Learn

Choose your product

NBC Learn K-12 product site
NBC Learn Higher Ed product site

For NBC Learn in Blackboard™ please log in to your institution's Blackboard™ web site and click "Browse NBC Learn"

Close NBC Learn

If you have received a new user registration code from your institution, click your product below and use the "Register now" link to sign up for a personal account.

NBC Learn K-12 product site
NBC Learn Higher Ed product site

For further assistance, please contact our NBC Learn Support Team and we'll be happy to assist you.

Start Your Free
day
Day Trial!