How Do Salt and Sugar Prevent Microbial Spoilage?

Air Date: 02/21/2006
Source:
Scientific American
Creator:
Mickey Parish
Air/Publish Date:
02/21/2006
Event Date:
02/21/2006
Resource Type:
Article
Copyright:
n/a
Copyright Date:
2006
Clip Length:
-

This 2006 "Scientific American" article explains several ways in which salt (usually sodium chloride) and sugar (usually sucrose), inhibit microbial growth to "cure" and preserve foods. Scientific American, February 21, 2006

How Do Salt and Sugar Prevent Microbial Spoilage?

Mickey Parish, chair of the Nutrition and Food Science Department at the University of Maryland, explains.

February 21, 2006

Protection of foods from microbial spoilage using salt (usually sodium chloride) or sugar (usually sucrose) has ancient roots and is often referred to as salting, salt curing, corning or sugar curing. (Pieces of rock salt used for curing are sometimes called corns, hence the name "corned beef.") Curing may utilize solid forms of salt and sugar or solutions in which salt or sugar is mixed with water. For instance, brine is the term for salt solutions used in curing or pickling preservation processes. Examples of foods preserved with salt or sugar include the aforementioned corned beef as well as bacon, salt pork, sugar-cured ham, fruit preserves, jams and jellies, among others.

There are numerous descriptions and permutations of curing which may include additional preservation techniques such as smoking or ingredients such as spices. However, all curing processes fundamentally depend on the use of salt and/or sugar as the primary preservation agent(s). Incidentally, these processes not only prevent spoilage of foods, but more importantly serve to inhibit or prevent growth of food-borne pathogens such as Salmonella or Clostridium botulinum when properly applied.

There are several ways in which salt and sugar inhibit microbial growth. The most notable is simple osmosis, or dehydration. Salt or sugar, whether in solid or aqueous form, attempts to reach equilibrium with the salt or sugar content of the food product with which it is in contact. This has the effect of drawing available water from within the food to the outside and inserting salt or sugar molecules into the food interior. The result is a reduction of the so-called product water activity (aw), a measure of unbound, free water molecules in the food that is necessary for microbial survival and growth. The aw of most fresh foods is 0.99 whereas the aw necessary to inhibit growth of most bacteria is roughly 0.91. Yeasts and molds, on the other hand, usually require even lower aw to prevent growth.

Salt and sugar's other antimicrobial mechanisms include interference with a microbe's enzyme activity and weakening the molecular structure of its DNA. Sugar may also provide an indirect form of preservation by serving to accelerate accumulation of antimicrobial compounds from the growth of certain other organisms. Examples include the conversion of sugar to ethanol in wine by fermentative yeasts or the conversion of sugar to organic acids in sauerkraut by lactic acid bacteria.

Microorganisms differ widely in their ability to resist salt- or sugar-induced reductions of aw. Most disease-causing bacteria do not grow below 0.94 aw (roughly 10 percent sodium chloride concentration), whereas most molds that spoil foods grow at an aw as low as 0.80, corresponding to highly concentrated salt or sugar solutions. Yet other microorganisms grow quite well under even more highly osmotic, low aw conditions. For example, halophiles are an entire class of "salt-loving" bacteria that actually require a significant level of salt to grow and are capable of spoiling salt-cured foods. These include members of the genera Halobacillus and Halococcus. Food products that are concentrated sugar solutions, such as concentrated fruit juices, can be spoiled by sugar-loving yeasts such as species of Zygosaccharomyces. Nevertheless, use of salt and sugar curing to prevent microbial growth is an ancient technique that remains important today for the preservation of foods.

Close NBC Learn

FILTERING

If you are trying to view the videos from inside a school or university, your IT admin may need to enable streaming on your network. Please see the Internet Filtering section of our Technical Requirements page.

DVDs AND OTHER COPIES

Videos on this page are not available on DVD at this time due to licensing restrictions on the footage.

DOWNLOADING VIDEOS

Subscribers to NBC Learn may download videos and play them back without an internet connection. Please click here to find out more about subscribing or to sign up for a FREE trial (download not included in free trial).

Still have questions?
Click here to send us an email.

Close NBC Learn

INTERNATIONAL VISITORS

The Science of the Olympic Winter Games videos are only available to visitors inside the United States due to licensing restrictions on the Olympics footage used in the videos.

FILTERING

If you are trying to view the videos from inside a school or university, your IT admin may need to enable streaming on your network. Please see the Internet Filtering section of our Technical Requirements page.

DVDs AND OTHER COPIES

The Science of the Olympic Winter Games is not available on DVD at this time due to licensing restrictions on on Olympic footage.

DOWNLOADING VIDEOS

Subscribers to NBC Learn may download videos and play them back without an internet connection. Please click here to find out more about subscribing or to sign up for a FREE trial (download not included in free trial).

Still have questions?
Click here to send us an email.

Close NBC Learn

Choose your product

NBC Learn K-12 product site
NBC Learn Higher Ed product site

For NBC Learn in Blackboard™ please log in to your institution's Blackboard™ web site and click "Browse NBC Learn"

Close NBC Learn

If you have received a new user registration code from your institution, click your product below and use the "Register now" link to sign up for a personal account.

NBC Learn K-12 product site
NBC Learn Higher Ed product site

For further assistance, please contact our NBC Learn Support Team and we'll be happy to assist you.

Start Your Free
day
Day Trial!