Soap Opera

Air Date: 08/31/1998
Source:
Scientific American
Creator:
Alan Hall
Air/Publish Date:
08/31/1998
Event Date:
08/31/1998
Resource Type:
Article
Copyright:
n/a
Copyright Date:
1998
Clip Length:
-

This 1998 "Scientific American" article reports on how scientists are studying soap bubbles to better understand turbulence in two dimensions. A greater understanding of soap films could be the key to understanding flow patterns in deep ocean currents and other phenomena. Source: Scientific American, August 31, 1998.

Soap Opera
By Alan Hall Monday, August 31, 1998

One of the fascinations of blowing soap bubbles is the beautiful swirls of iridescent color that flow across their surface when the bubbles catch the light. But physicists have another reason for playing with soap films. These mystical whorls may provide the key to understanding important phenomena from the Great Red Spot on Jupiter to the intricacies of deep ocean currents.

The image shown above was made by Michael Rivera of the University of Pittsburgh along with Peter Vorobieff and Robert E. Ecke of the Center for Nonlinear Studies at Los Alamos National Laboratory when they conducted the first quantitative measurements of the properties through an entire soap film; previous measurements were made on a point-by-point basis. The team reported its results in the August 17, 1998 issue of Physical Review Letters.

Lately, physicists have become interested in soap films because they provide a unique window into turbulence in two dimensions. The films consist of a thin slab of water sandwiched between two layers of soap molecules. The films range from a few microns (millionths of a meter) to several tens of microns in thickness. Yet they can have a surface area that is, by comparison, immense--several meters. So the fluid trapped between the layers is constrained to movement in two spatial dimensions.

To study these flow patterns, the Los Alamos researchers added highly reflective titanium dioxide particles to the fluid, and snapped pictures with a digital camera. The technique allowed them to obtain detailed images of thousands of points of the fluid every 160 to 300 microseconds. By tilting the film so it slid through a comb-like structure, they created turbulence and were able to measure the formation of swirling vortexes. The results indicated that the flow of energy was from larger to smaller eddies, where it gradually dissipated downstream.

There may be more truth than we thought to the old saw, "the world in a soap bubble."

Close NBC Learn

FILTERING

If you are trying to view the videos from inside a school or university, your IT admin may need to enable streaming on your network. Please see the Internet Filtering section of our Technical Requirements page.

DVDs AND OTHER COPIES

Videos on this page are not available on DVD at this time due to licensing restrictions on the footage.

DOWNLOADING VIDEOS

Subscribers to NBC Learn may download videos and play them back without an internet connection. Please click here to find out more about subscribing or to sign up for a FREE trial (download not included in free trial).

Still have questions?
Click here to send us an email.

Close NBC Learn

INTERNATIONAL VISITORS

The Science of the Olympic Winter Games videos are only available to visitors inside the United States due to licensing restrictions on the Olympics footage used in the videos.

FILTERING

If you are trying to view the videos from inside a school or university, your IT admin may need to enable streaming on your network. Please see the Internet Filtering section of our Technical Requirements page.

DVDs AND OTHER COPIES

The Science of the Olympic Winter Games is not available on DVD at this time due to licensing restrictions on on Olympic footage.

DOWNLOADING VIDEOS

Subscribers to NBC Learn may download videos and play them back without an internet connection. Please click here to find out more about subscribing or to sign up for a FREE trial (download not included in free trial).

Still have questions?
Click here to send us an email.

Close NBC Learn

Choose your product

NBC Learn K-12 product site
NBC Learn Higher Ed product site

For NBC Learn in Blackboard™ please log in to your institution's Blackboard™ web site and click "Browse NBC Learn"

Close NBC Learn

If you have received a new user registration code from your institution, click your product below and use the "Register now" link to sign up for a personal account.

NBC Learn K-12 product site
NBC Learn Higher Ed product site

For further assistance, please contact our NBC Learn Support Team and we'll be happy to assist you.

Start Your Free
day
Day Trial!