Science of Innovation: 3-D Bioprinting

Air Date: 02/11/2016
Source:
NBC Learn
Creator:
Kate Snow
Air/Publish Date:
02/11/2016
Event Date:
02/11/2016
Resource Type:
Science Explainer
Copyright:
NBCUniversal Media, LLC.
Copyright Date:
2016
Clip Length:
00:05:36

Adam Feinberg at Carnegie Mellon University has come up with a technique that expands the use of 3-D printing technology and could one day allow researchers to print heart tissue. "Science of Innovation" is produced in partnership with the National Science Foundation and the United States Patent and Trademark Office.

Science of Innovation -- 3-D Bioprinting

KATE SNOW reporting:

From housewares, to toys, to high fashion, 3-D printers can be used to make many different things. Printing one layer at a time, 3-D printers use materials like plastics and metals to build intricate and complex objects,such as tools, replacement parts, even prosthetics. In engineering, this type of construction is referred to as “additive manufacturing.” In Pittsburgh, one biomedical engineer has even invented a way to 3-D print human tissue, an innovation that could one day allow us to print a working human heart.

ADAM FEINBERG (Carnegie Mellon University): The actual human heart is incredibly complex, and we don't necessarily need to mimic every feature in there. What we're trying to create is a minimum feature set that really recreates the core properties of heart muscle tissue.

SNOW: Adam Feinberg, a professor at Carnegie Mellon University, received a 2015 Career award from the National Science Foundation for his work on 3-D bioprinting. His research touches upon a crucial aspect of innovation, how scientists and engineers improve upon the work of others to make things better, faster and cheaper. Feinberg didn't dream up the idea of 3-D printing, but he is improving and adapting the technology to solve big needs.

FEINBERG: We really pull understanding, knowledge, technologies from anywhere we need them, and combine them to solve what we need to solve. And I think out of that process comes innovation.

SNOW: The problem Feinberg hopes to solve is a method for bioprinting human heart tissue and growing it outside of the body, an achievement that could help millions of people who suffer from heart disease, an affliction that kills more than 600,000 people in the United States every year.

FEINBERG: Heart disease is the number one cause of death worldwide. And really, the problem is that the heart doesn't regenerate. If your heart becomes damaged, the heart muscle cells inside just cannot divide and regrow that damage. So once the damage occurs, through a heart attack or a lot of other diseases, it's permanent.

SNOW: Since the 1960s, artificial hearts have helped patients live longer. However, artificial hearts can cause blood to clot and are still a continuing problem. Heart transplants offer another option for patients, but there are a limited number of hearts available for donation every year. Feinberg thought he might be able to bioprint new heart muscle tissue using 3-D printers. But first, he had to figure out how to get them to print soft tissue-like material.

FEINBERG: Soft materials deform under their own weight and air. So when you go to 3-D print that, you're going to lay down one layer, and if you come down to put the next layer on top, that first layer will now have moved. If that first layer moves, you can't put the second layer on top.

SNOW: After a lot of trial and error, Feinberg invented a process that prints a soft gel inside a second “support” gel. This allowed him to print delicate soft structures that could support heart muscle tissue without it collapsing onto itself.

FEINBERG: The support is really what we 3-D print into. It's made out of a gelatin slurry, which is really just these tiny particles of gelatin. You can think of them like grains of sand.

SNOW: In this demo, Feinberg starts with a 3-D image of the coronary artery, a major artery which supplies critical blood flow to the heart. Instead of printing with actual heart tissue, he uses alginate, a polymer material derived from algae, which he prints into the support gel. After the artery is printed, the support gel is melted, leaving an exact replica of the artery. This replica acts as a scaffold to grow human heart cells. Like the scaffolding that surrounds a building while it's being built.

FEINBERG: You can either print cells in the scaffold during this process, or you can basically coat the scaffold with cells afterwards. While we are still many years away from bioprinting a full human heart, Feinberg says that within five years he may be able to print heart tissue, a breakthrough that could allow researchers to test drugs on 3-D-printed heart tissue, instead of through costly human trials.

FEINBERG: We can make human heart muscle in the dish that you can test these drugs on, and the human heart muscle basically has all the unique properties of the actual human heart.

SNOW: Feinberg has seven patents issued by the U.S. Patent and Trademark Office. He hopes that other scientists and engineers will take his innovations and improve upon them even further.

FEINBERG: The way we look at it is, we don't want to hold the technologies in. We patent it essentially so companies will be motivated to take the technology and move it forward.

SNOW: Technology, improved by innovation, that is only just beginning to make a big impact, and could one day save lives.

Close NBC Learn

Choose your product

NBC Learn K-12 product site
NBC Learn Higher Ed product site

For NBC Learn in Learning Management Systems please log in to your institution's Learning Management System web site and click "Browse NBC Learn".
For further assistance, please contact our NBC Learn Support Team and we'll be happy to assist you.

Start Your Free
day
Day Trial!
Close NBC Learn

FILTERING

If you are trying to view the videos from inside a school or university, your IT admin may need to enable streaming on your network. Please see the Internet Filtering section of our Technical Requirements page.

DVDs AND OTHER COPIES

Videos on this page are not available on DVD at this time due to licensing restrictions on the footage.

DOWNLOADING VIDEOS

Subscribers to NBC Learn may download videos and play them back without an internet connection. Please click here to find out more about subscribing or to sign up for a FREE trial (download not included in free trial).

Still have questions?
Click here to send us an email.

Close NBC Learn

INTERNATIONAL VISITORS

The Science of the Olympic Winter Games videos are only available to visitors inside the United States due to licensing restrictions on the Olympics footage used in the videos.

FILTERING

If you are trying to view the videos from inside a school or university, your IT admin may need to enable streaming on your network. Please see the Internet Filtering section of our Technical Requirements page.

DVDs AND OTHER COPIES

The Science of the Olympic Winter Games is not available on DVD at this time due to licensing restrictions on on Olympic footage.

DOWNLOADING VIDEOS

Subscribers to NBC Learn may download videos and play them back without an internet connection. Please click here to find out more about subscribing or to sign up for a FREE trial (download not included in free trial).

Still have questions?
Click here to send us an email.

Close NBC Learn

Choose your product

NBC Learn K-12 product site
NBC Learn Higher Ed product site

For NBC Learn in Blackboard™ please log in to your institution's Blackboard™ web site and click "Browse NBC Learn"

Close NBC Learn

If you have received a new user registration code from your institution, click your product below and use the "Register now" link to sign up for a personal account.

NBC Learn K-12 product site
NBC Learn Higher Ed product site

For further assistance, please contact our NBC Learn Support Team and we'll be happy to assist you.

Start Your Free
day
Day Trial!