Science of Innovation: Friction Stir Welding

Air Date: 02/11/2016
Source:
NBC Learn
Creator:
Kate Snow
Air/Publish Date:
02/11/2016
Event Date:
02/11/2016
Resource Type:
Science Explainer
Copyright:
NBCUniversal Media, LLC.
Copyright Date:
2016
Clip Length:
00:04:46

Welding has long been used to join pieces of metal together. At the University of North Texas, Rajiv Mishra is using a form of welding in a new technology that can improve metal’s strength, toughness, and other properties and could bring new opportunities to the automotive and aircraft industries. "Science of Innovation" is produced in partnership with the National Science Foundation and the United States Patent and Trademark Office.

Science of Innovation -- Friction Stir Welding

KATE SNOW reporting:

From building bridges, to erecting skyscrapers, to assembling airplanes and cars, welding allows engineers and manufacturers to connect metal structures. But the method of joining metal to metal through melting had remained mostly the same for decades. That is, until 1991, when a new kind of welding was invented. Instead of melting metals to connect them using high temperatures, this new method, called friction stir welding, uses friction, just like when you rub your hands together on a cold day to warm them.

RAJIV MISHRA (University of North Texas): Friction is everywhere. And if friction did not exist, we would not have a comfortable life. We are able to walk on any surface because we have friction that allows us to walk.

SNOW: Rajiv Mishra, a professor at the University of North Texas, is one of the world's foremost experts on friction stir welding. Although Mishra didn't invent friction stir welding, he's using his imagination, a key component of the innovation process, to create new applications of this technology.

In his lab at the Center for Friction Stir Processing, which receives funding from the National Science Foundation, Mishra demonstrates how friction stir welding works. He begins by taking two aluminum alloy plates clamped together tightly in a machine. A metal tool resembling a drill bit is inserted in between the plates. The tool spins as it travels along both edges.

The friction created by the spinning tool heats the atoms in the solid metal, making them move around, or diffuse. The metals become deformed, and atoms from both plates are bonded together, without any melting.

MISHRA: Friction between the tool and the work piece creates the heat, which then allows the material to become softer and become more plastic. And so the plasticized material moves around.

SNOW: In a matter of minutes, the aluminum plates have been welded together and are cool enough to touch. The bond created by friction stir welding is almost perfectly smooth and as strong as the original aluminum plates. When he first observed how friction stir welding changed the microstructure of the metals, Mishra started imagining new ways that it could be used for more than just welding.

MISHRA: So the idea behind that is that instead of taking many pieces of metal and then bonding it together, you can take a single piece of metal and give it a complex shape. If you look at cars, back lid of cars, if you look at aircraft doors and so on, we can change the strength of the material, we can change fracture toughness.

SNOW: Mishra started using the friction stir welding tool to strengthen the microstructure in more complicated metal parts that are usually cast from molds, like the rim of a car wheel.

MISHRA: This is a region which experiences high stress, and it is sensitive to fatigue, and so we could friction stir process the region to show that our strength and fatigue properties are much better in this region.

SNOW: No one had ever attempted to use friction stir processing except as a tool to bond two pieces of metal together. Mishra's innovative way of using it to make metal stronger ultimately led to four patents granted by the U.S. Patent and Trademark Office.

MISHRA: When we took the friction stir process, the process already was invented, it existed. It was just that it was being applied in one particular way, and we thought of other ways.

SNOW: Through extensive testing, Mishra and his students continue to learn all they can about how the friction stir process transforms the physical and mechanical properties of all sorts of metals. Mishra hopes he can convince more designers and manufacturers that advances in friction stir processing can one day make cars, planes and trains lighter and stronger.

Close NBC Learn

Choose your product

NBC Learn K-12 product site
NBC Learn Higher Ed product site

For NBC Learn in Learning Management Systems please log in to your institution's Learning Management System web site and click "Browse NBC Learn".
For further assistance, please contact our NBC Learn Support Team and we'll be happy to assist you.

Start Your Free
day
Day Trial!
Close NBC Learn

FILTERING

If you are trying to view the videos from inside a school or university, your IT admin may need to enable streaming on your network. Please see the Internet Filtering section of our Technical Requirements page.

DVDs AND OTHER COPIES

Videos on this page are not available on DVD at this time due to licensing restrictions on the footage.

DOWNLOADING VIDEOS

Subscribers to NBC Learn may download videos and play them back without an internet connection. Please click here to find out more about subscribing or to sign up for a FREE trial (download not included in free trial).

Still have questions?
Click here to send us an email.

Close NBC Learn

INTERNATIONAL VISITORS

The Science of the Olympic Winter Games videos are only available to visitors inside the United States due to licensing restrictions on the Olympics footage used in the videos.

FILTERING

If you are trying to view the videos from inside a school or university, your IT admin may need to enable streaming on your network. Please see the Internet Filtering section of our Technical Requirements page.

DVDs AND OTHER COPIES

The Science of the Olympic Winter Games is not available on DVD at this time due to licensing restrictions on on Olympic footage.

DOWNLOADING VIDEOS

Subscribers to NBC Learn may download videos and play them back without an internet connection. Please click here to find out more about subscribing or to sign up for a FREE trial (download not included in free trial).

Still have questions?
Click here to send us an email.

Close NBC Learn

Choose your product

NBC Learn K-12 product site
NBC Learn Higher Ed product site

For NBC Learn in Blackboard™ please log in to your institution's Blackboard™ web site and click "Browse NBC Learn"

Close NBC Learn

If you have received a new user registration code from your institution, click your product below and use the "Register now" link to sign up for a personal account.

NBC Learn K-12 product site
NBC Learn Higher Ed product site

For further assistance, please contact our NBC Learn Support Team and we'll be happy to assist you.

Start Your Free
day
Day Trial!