Science of Innovation: Using Viruses to Make Batteries

Air Date: 02/11/2016
Source:
NBC Learn
Creator:
Kate Snow
Air/Publish Date:
02/11/2016
Event Date:
02/11/2016
Resource Type:
Science Explainer
Copyright:
NBCUniversal Media, LLC.
Copyright Date:
2016
Clip Length:
00:05:30

While most people see viruses as harmful, Angela Belcher at MIT sees the future of energy. Belcher uses viruses engineered in her laboratory to form nano-scale wires for tiny batteries that could eventually be used to produce a wide range of electronics at a lower cost. "Science of Innovation" is produced in partnership with the National Science Foundation and the United States Patent and Trademark Office.

Science of Innovation -- Using Viruses to Make Batteries

KATE SNOW reporting:

From smallpox, to influenza, to HIV, viruses can often be harmful. But in a laboratory at the Massachusetts Institute of Technology, new research is being done to turn these sometimes lethal agents into the energy cells of the future.

ANGELA BELCHER (Massachusetts Institute of Technology): I bet you, within these billion viruses within this little test tube, I bet you one of them is going to stick to a battery.

SNOW: Angela Belcher is a materials scientist at MIT who has been funded by the National Science Foundation. She's using viruses to turn new materials into batteries. Batteries store energy for later use in a wide variety of products, from flashlights to electric cars. But Belcher sees limitations with many of the batteries we use today.

BELCHER: Why don't we have better batteries? Why don't we have higher energy density batteries? Why don't we have less expensive batteries?

SNOW: To help solve this problem, Belcher turned to biochemistry. Her main inspiration, a key step in the process of innovation, came from studying organisms that have the ability to grow incredibly strong structures by gathering chemicals found in their natural environments, like the abalone, a snail that builds its own shell in the ocean. Belcher thought that by tweaking the DNA of a virus, she could create a virus that attracts conductive materials, like gold or copper, to build highly efficient miniature batteries.

BELCHER: When I first proposed this idea, the reviews came back that I was insane, that you cannot have a genetic link between a semiconductor, an electronic material, and a virus.

SNOW: Belcher started experimenting with a simple virus called the M13 bacteriophage, meaning “bacteria eater.” The M13 bacteriophage is harmless to humans, but thrives by infecting bacteria.

BELCHER: They're long and skinny. And the middle part of them, they're coded by almost three thousand proteins, they’re beautiful alpha helical proteins that self-assemble around the single strand of DNA inside of them.

SNOW: By swapping out bits of the M13 virus's DNA, Belcher created a virus that encodes proteins with the ability to latch onto metals that act as semiconductors, like cobalt oxide. To produce enough material for a battery, she had to make billions of copies of the modified
M13 bacteriophage virus. To do that, she needed to infect billions of its host organism-- bacteria.

BELCHER: We're saying, “Okay, we already know these viruses are good at infecting this particular bacteria. But let's put extra genes inside this virus so that this virus's job is not to just infect bacteria, but its job is to grow a battery.”

SNOW: In the lab, Belcher infects bacteria with her genetically-modified viruses, which replicate billions of times inside their bacterial hosts. The bacteria are then removed, leaving behind only pure, concentrated viruses.

BELCHER: And then we'll put it into a small little tube like this, and this is all purified, one particular kind of virus. And this particular virus we call “P8 number 9.” It's really, really good at binding gold ions out of solution and building beautiful gold wires.

SNOW: When Belcher's genetically-modified viruses are exposed to conductive material, whether it's gold or cobalt oxide - the metallic particles coat the entire length of the viruses, creating nano-scale wires. These nano-wires are then combined with other conductive materials used to make battery electrodes and then rolled out and put into a small coin cell battery.

Belcher proved that her genetically-modified viruses could be used to build batteries that are thin, flexible and able to fit into nonstandard shapes. A self-assembling battery built on a virus scaffold. Belcher was granted a patent from the U.S. Patent and Trademark Office for the unique process she developed to build batteries using viruses. She's also received dozens of other patents for inventions that harness nature's own mechanisms to assemble new materials.

BELCHER: Nature is actually a really fantastic problem solver. And you can think of that problem-solving as innovation.

SNOW: Belcher's lab continues to develop new genetically-engineered viruses for new purposes, like solar cells, fuel cells, biofuels, even cancer therapies. By harnessing nature's own processes, Angela Belcher has been able to turn today's viruses into tomorrow's batteries.

Close NBC Learn

Choose your product

NBC Learn K-12 product site
NBC Learn Higher Ed product site

For NBC Learn in Learning Management Systems please log in to your institution's Learning Management System web site and click "Browse NBC Learn".
For further assistance, please contact our NBC Learn Support Team and we'll be happy to assist you.

Start Your Free
day
Day Trial!
Close NBC Learn

FILTERING

If you are trying to view the videos from inside a school or university, your IT admin may need to enable streaming on your network. Please see the Internet Filtering section of our Technical Requirements page.

DVDs AND OTHER COPIES

Videos on this page are not available on DVD at this time due to licensing restrictions on the footage.

DOWNLOADING VIDEOS

Subscribers to NBC Learn may download videos and play them back without an internet connection. Please click here to find out more about subscribing or to sign up for a FREE trial (download not included in free trial).

Still have questions?
Click here to send us an email.

Close NBC Learn

INTERNATIONAL VISITORS

The Science of the Olympic Winter Games videos are only available to visitors inside the United States due to licensing restrictions on the Olympics footage used in the videos.

FILTERING

If you are trying to view the videos from inside a school or university, your IT admin may need to enable streaming on your network. Please see the Internet Filtering section of our Technical Requirements page.

DVDs AND OTHER COPIES

The Science of the Olympic Winter Games is not available on DVD at this time due to licensing restrictions on on Olympic footage.

DOWNLOADING VIDEOS

Subscribers to NBC Learn may download videos and play them back without an internet connection. Please click here to find out more about subscribing or to sign up for a FREE trial (download not included in free trial).

Still have questions?
Click here to send us an email.

Close NBC Learn

Choose your product

NBC Learn K-12 product site
NBC Learn Higher Ed product site

For NBC Learn in Blackboard™ please log in to your institution's Blackboard™ web site and click "Browse NBC Learn"

Close NBC Learn

If you have received a new user registration code from your institution, click your product below and use the "Register now" link to sign up for a personal account.

NBC Learn K-12 product site
NBC Learn Higher Ed product site

For further assistance, please contact our NBC Learn Support Team and we'll be happy to assist you.

Start Your Free
day
Day Trial!