Science of Innovation: Origami Structures

Air Date: 02/11/2016
Source:
NBC Learn
Creator:
Kate Snow
Air/Publish Date:
02/11/2016
Event Date:
02/11/2016
Resource Type:
Science Explainer
Copyright:
NBCUniversal Media, LLC.
Copyright Date:
2016
Clip Length:
00:05:54

Origami is the ancient Japanese art of paper folding. But to engineer Mary Frecker of Pennsylvania State University, it is the future for designing tools that could be used in fields such as medicine and space exploration. "Science of Innovation" is produced in partnership with the National Science Foundation and the United States Patent and Trademark Office.

Science of Innovation - Origami Structures

KATE SNOW, reporting:

To some, the Japanese art of origami looks like child's playas thin sheets of paper are folded into intricate shapes and figures, like birds, flowers, and dragons. But to scientists and engineers, the principles of origami have been applied to design problems, such as getting solar panels into space, making a foldable robot that can walk, and even creating a working optical microscope, simply by folding paper in a systematic way.

MARY FRECKER (Pennsylvania State University): Origami engineering is really focused on designing deployable structures that can fold and unfold. It can fold up into a compact shape and then deploy into a much larger shape.

SNOW: Mary Frecker is a professor of mechanical and biomedical engineering at Pennsylvania State University.  Her research, funded by the National Science Foundation, uses the principles of origami to design better devices and equipment, including smaller, smarter, and more efficient tools for surgeons.

FRECKER: I think what is innovative about what we're doing is we're trying to, not design something static. We're trying to look at this idea of folding and unfolding, and how do we control that, and how do we make that happen, and how do we use it for something useful?

SNOW: Frecker's inventions, which have already received several patents from the United States Patent and Trademark Office, could one day make surgeries less invasive. According to the Centers for Disease Control and Prevention, more than 50 million Americans underwent surgical procedures in 2010. If surgeries could be performed through smaller incisions or by using ear, nose and mouth pathways, patients would have less pain and scarring, shorter hospital stays, and quicker recovery times.

FRECKER: If we could have a surgical instrument that could be very small and compact and be inserted into the body through a small incision, say, and then deploy into something larger once inside, then you get all the benefits of the minimally invasive approach.

SNOW: However, when it came time to build these micro-tools - some thinner than a human hair - Frecker and her team had to overcome several design challenges. One of these included creating tiny hinges and joints--an essential part to many mechanical devices that would enable the instruments to work inside the body. Their solution incorporates the principles of origami.  Instead of having several moving parts, these micro-tools could be made as single structures that fold by themselves, eliminating the need for separate hinges and joints.

FRECKER: Our project is focused on what we call self-folding, where we would like to be able to have a device that would, say, for example, start from a flat sheet and fold into a certain shape on its own, without having to fold manually, like it's done typically with paper.

SNOW: Frecker's team includes not just engineers and materials scientists, but as part of the NSF grant, it also includes someone with a different skill set.

REBECCA STRZELEC (Pennsylvania State University): I was brought into the team to round us out, to get a different kind of a thinker.

SNOW: Rebecca Strzelec is an artist who uses computer-aided-design, or CAD and three-dimensional printing to create wearable objects of art.   

SNOW: Strzelec's participation is an example of the crucial role teamwork can often play in the innovation process, as people with diverse sets of talents and backgrounds work together.

STRZELEC: I think as my role as the artist, I kind of sweep in sometimes and shake things up a bit. I said, well we haven't thought about things that unfurl or things that are sheathed like bananas, for instance, or flowers, or a plant that unrolls when its new leaves come out.

SNOW: The team works with existing or newly-created "smart materials" or composites and polymers that carry unique properties, like the ability to stretch or rotate. These materials are then paired with other smart materials with different properties such as the ability to compress or expand when exposed to various stimuli, like a type of force or stress.

FRECKER: If I apply a magnetic field to my materials, it would fold into a certain shape. And then if I apply the electric field to the same materials, it would fold into a different shape.

SNOW: Depending on the type and strength of the stimuli, the materials can do things like curve, inch along, fold up into a box, or catapult a small object through the air. Eventually, these applications can be used for the design of structures like a foldable antenna used to gather information from space.   

FRECKER: I think this project in particular, because it involves multiple disciplines, really requires some teamwork. So whether it's the materials side or the design or the modelling or the artistic inspiration, all of that really contributes to our outcomes.

SNOW: An outcome that could help pave the way for new technologies due to an innovative team inspired by the ancient art of origami.  

 

Close NBC Learn

Choose your product

NBC Learn K-12 product site
NBC Learn Higher Ed product site

For NBC Learn in Learning Management Systems please log in to your institution's Learning Management System web site and click "Browse NBC Learn".
For further assistance, please contact our NBC Learn Support Team and we'll be happy to assist you.

Start Your Free
day
Day Trial!
Close NBC Learn

FILTERING

If you are trying to view the videos from inside a school or university, your IT admin may need to enable streaming on your network. Please see the Internet Filtering section of our Technical Requirements page.

DVDs AND OTHER COPIES

Videos on this page are not available on DVD at this time due to licensing restrictions on the footage.

DOWNLOADING VIDEOS

Subscribers to NBC Learn may download videos and play them back without an internet connection. Please click here to find out more about subscribing or to sign up for a FREE trial (download not included in free trial).

Still have questions?
Click here to send us an email.

Close NBC Learn

INTERNATIONAL VISITORS

The Science of the Olympic Winter Games videos are only available to visitors inside the United States due to licensing restrictions on the Olympics footage used in the videos.

FILTERING

If you are trying to view the videos from inside a school or university, your IT admin may need to enable streaming on your network. Please see the Internet Filtering section of our Technical Requirements page.

DVDs AND OTHER COPIES

The Science of the Olympic Winter Games is not available on DVD at this time due to licensing restrictions on on Olympic footage.

DOWNLOADING VIDEOS

Subscribers to NBC Learn may download videos and play them back without an internet connection. Please click here to find out more about subscribing or to sign up for a FREE trial (download not included in free trial).

Still have questions?
Click here to send us an email.

Close NBC Learn

Choose your product

NBC Learn K-12 product site
NBC Learn Higher Ed product site

For NBC Learn in Blackboard™ please log in to your institution's Blackboard™ web site and click "Browse NBC Learn"

Close NBC Learn

If you have received a new user registration code from your institution, click your product below and use the "Register now" link to sign up for a personal account.

NBC Learn K-12 product site
NBC Learn Higher Ed product site

For further assistance, please contact our NBC Learn Support Team and we'll be happy to assist you.

Start Your Free
day
Day Trial!