Science of Universal Orlando Resort™: Hollywood Rip Ride Rockit™

Air Date: 03/31/2017
Source:
NBC Learn
Creator:
-
Air/Publish Date:
03/31/2017
Event Date:
03/31/2017
Resource Type:
Science Explainer
Copyright:
NBCUniversal Media, LLC.
Copyright Date:
2017
Clip Length:
00:03:26

Hollywood Rip Ride Rockit™ is a thrilling roller coaster that takes guests 17 stories high at a 90-degree angle before going over a drop and reaching speeds of 65-mph. Engineers at Universal Orlando Resort™ rely on math and science, including physics concepts such as Newton's Laws of Motion and potential and kinetic energy, to design all the twists, turns and loops along the track. "Science of Universal Orlando Resort™" is produced by NBC Learn in partnership with Universal Orlando Youth Programs.

Science of Universal Orlando Resort™ - Hollywood Rip Ride Rockit™

JUSTIN SCHWARTZ (Universal Creative):

Hi, everybody, my name is Justin Schwartz. I'm an engineer at Universal Orlando Resort. When I was eleven years old, I went to my first theme park and I saw rollercoasters in action. And I thought to myself, how do I actually get involved in building these rollercoasters? So I went to my teachers, I went to my friends and family and talked to them about it. And they told me, they said, "hey, the best path to becoming a rollercoaster designer is to get into the field of engineering." So that's what I did. Today we're going to go learn a lot about the Hollywood Rip Ride Rockit rollercoaster and the physics and science behind it. The steps for designing a rollercoaster at Universal require a very specific engineering design process, and for Rockit, we knew we wanted to build a rollercoaster that involved music and audio. So the first thing we did was, let's come up with some cool ways to deliver that audio experience to our guests.  We did that by adding onboard audio, onboard lighting and onboard video onto the ride itself, so we can capture the guests' total experience. In the design phase, we use computer programs to understand the science and the dynamics behind the ride itself. And from that, we have to go ahead and make design changes in order to make it fit within our layout, within our space that we have. When we design the elevation and turns on a rollercoaster, particularly on the Rockit, we have to use science and math to figure that out. And the main things we use when we're trying to figure those things out are Newton's laws of motion and kinetic energy and potential energy. When we lift the ride to the top of the hill, we're actually adding potential energy to the ride. And when the ride goes over to the top of the hill, it changes that potential energy into kinetic energy. Newton's first law of motion indicates that an object a motion will stay in motion as long as no outside forces apply to it, or an object at rest will stay at rest unless an outside force is applied to it. Also Newton's second law of motion, which is force equals mass times acceleration, talks about the relationship between an object's force, its mass and acceleration. On a rollercoaster, when we bring that vehicle to the top of the hill with a chain, we're actually accelerating that vehicle and there's forces attached to that chain when we accelerate the vehicle up to the top of the hill. So it's really important that we understand the relationship, that we size the vehicle appropriately and we understand what those accelerations need to be. Newton's third law of motion says for every action there is an equal and opposite reaction. So, on a rollercoaster there’s this relationship between the ride vehicle itself and the track. So on a ride like Hollywood Rip Ride Rockit, we have this big red steel track and these polyurethane wheels. And as the ride vehicle goes through and maneuvers through different elements, it creates forces and those forces get applied into the track. The track then transmits those forces into the columns of the ride and into the foundation in the ground. But what also Newton's third law of motion is telling us is that those forces get reapplied back into the vehicle actually through the wheels into the wheel carrier, into the axle and to the steel frame of the vehicle. So all those components on the vehicle themselves have to be sized appropriately and the material has to be specified appropriately, such that the forces can be transmitted and absorb correctly. All those pieces are very important for us to make sure that we deliver a ride that's exciting and unique to our guests.

Close NBC Learn

Choose your product

NBC Learn K-12 product site
NBC Learn Higher Ed product site

For NBC Learn in Learning Management Systems please log in to your institution's Learning Management System web site and click "Browse NBC Learn".
For further assistance, please contact our NBC Learn Support Team and we'll be happy to assist you.

Start Your Free
day
Day Trial!
Close NBC Learn

FILTERING

If you are trying to view the videos from inside a school or university, your IT admin may need to enable streaming on your network. Please see the Internet Filtering section of our Technical Requirements page.

DVDs AND OTHER COPIES

Videos on this page are not available on DVD at this time due to licensing restrictions on the footage.

DOWNLOADING VIDEOS

Subscribers to NBC Learn may download videos and play them back without an internet connection. Please click here to find out more about subscribing or to sign up for a FREE trial (download not included in free trial).

Still have questions?
Click here to send us an email.

Close NBC Learn

INTERNATIONAL VISITORS

The Science of the Olympic Winter Games videos are only available to visitors inside the United States due to licensing restrictions on the Olympics footage used in the videos.

FILTERING

If you are trying to view the videos from inside a school or university, your IT admin may need to enable streaming on your network. Please see the Internet Filtering section of our Technical Requirements page.

DVDs AND OTHER COPIES

The Science of the Olympic Winter Games is not available on DVD at this time due to licensing restrictions on on Olympic footage.

DOWNLOADING VIDEOS

Subscribers to NBC Learn may download videos and play them back without an internet connection. Please click here to find out more about subscribing or to sign up for a FREE trial (download not included in free trial).

Still have questions?
Click here to send us an email.

Close NBC Learn

Choose your product

NBC Learn K-12 product site
NBC Learn Higher Ed product site

For NBC Learn in Blackboard™ please log in to your institution's Blackboard™ web site and click "Browse NBC Learn"

Close NBC Learn

If you have received a new user registration code from your institution, click your product below and use the "Register now" link to sign up for a personal account.

NBC Learn K-12 product site
NBC Learn Higher Ed product site

For further assistance, please contact our NBC Learn Support Team and we'll be happy to assist you.

Start Your Free
day
Day Trial!