Nanotechnology: Nanoarchitecture

Air Date: 01/14/2016
Source:
NBC Learn
Creator:
Kate Snow
Air/Publish Date:
01/14/2016
Event Date:
01/14/2016
Resource Type:
Science Explainer
Copyright:
NBCUniversal Media, LLC.
Copyright Date:
2016
Clip Length:
00:06:07

A research group at CalTech is proving big and heavy materials are not the only ways to build strong, robust structures. By scaling the structure of materials down to the nanoscale, just billionths of a meter in size, it's possible to make structures that are lightweight, resilient, and more than 99% air. "Nanotechnology: Super Small Science" is produced by NBC Learn in partnership with the National Science Foundation.

Nanotechnology -- Nanoarchitecture

KATE SNOW, reporting:

The Eiffel Tower in Paris. The Statue of Liberty in New York. The Space Needle in Seattle. These massive structures were built with strong, heavy materials that can withstand the forces of nature and endure the test of time. But one scientist is proving that big and heavy are not the only ways to get strong, robust structures. By scaling the structure of materials down to the nanoscale, just billionths of a meter in size, it's possible to build structures that are lightweight and resilient, and are more than 99 percent air.

JULIA GREER (California Institute of Technology): We really like defying theories because we're all about breaking the rules.

SNOW: Julia Greer is a professor of materials science and mechanics at the California Institute of Technology and is funded by the National Science Foundation. Her research group is responsible for making the seemingly impossible possible by fabricating what she calls nano-metamaterials, microscopic building materials with nanoscale architecture inside that are light as a feather, but strong as steel.

GREER: We make these architected nano-metamaterials, so to speak, because they're not really only materials and they're not really only structures, they're both and that's a new field.

SNOW: Scientists are already designing metamaterials that can bend light to camouflage objects, improve wireless charging and manipulate sound waves for soundproofing. But Greer's team is one of the first to create structural metamaterials, made of anything from metal to ceramics. Their incredible strength is a result of how they're constructed. Greer uses a technique that can be seen throughout nature called hierarchical architecture. It's why a turtle's shell is so durable or a lobster's claw so strong. At the nanoscale, hierarchical architecture consists of complex, repeating patterns all invisible to the naked eye.

GREER: These hard biological materials have these kinds of levels of hierarchy, as we call them, in their design, which is they're never continuous. Evolution has had millions of years to arrive to that particular structure. So what we do with our architectures is we are inspired by the same approach.

SNOW: To test the strength of a certain material for a structural application, Greer's students use hierarchical architecture to design a 3-dimensional nanolattice, an open-air structure made out of individual hollow nanotubes with walls just tens to hundreds of nanometers thick. The nanolattice is printed as a polymer on the surface of a silicon wafer using a technique called two-photon lithography, a process similar to 3D laser printing in that they both can produce 3-dimensional objects. The nanolattice is then coated with the particular material, in this case, glass. After cutting the structure open with an ion beam, it is then left in a vacuum to completely remove the polymer, resulting in a hollow glass nanolattice. This one has a height of just 75,000 nanometers, about the diameter of a single human hair.

GREER: Oh it's definitely deforming, look at that! In the middle it's breaking on the sides.

SNOW: In this demonstration, Greer's team tests the strength of the nanolattice by placing it in an instrument they call a SEMentor. When the nanolattice is compressed, not only does it not collapse catastrophically.

GREER: Look at that. Totally didn't break.

SNOW: Something else unexpected happens.

GREER: Oh wow! That was the exciting part! Wow, did you see that? It's doing exactly the opposite of what it ought to be doing. This material is very brittle. It's just like a window glass, right? And so no matter which way you architect a window glass, you can imagine these little glass figurines, right? They should shatter when you push on them and this one apparently refuses to shatter no matter what.

SNOW: The design of the structure is the reason for its remarkable strength. As a result, scientists hope it might one day be possible to build a nearly indestructible car, an airplane so lightweight that you could easily pick it up.

ENGINEER: And liftoff!

SNOW: Or a rocket that could transport astronauts and cargo into space at a much cheaper cost. Greer's next challenge is scaling these nano-metamaterials up so that they can be manufactured in mass quantities and used in biomedical, military, and energy applications.

GREER: We're really shifting the way we think about materials. Up to this point, it's always been if you want something that's really strong or you want something that's damage tolerant, you know what to use because you know this is a metal. And what we're showing the world, at this point, is that you don't have to do that. You can dictate what the properties that you need are.

SNOW: For Greer, the nanotechnology that her team is developing is changing traditional thought around materials science, engineering and design.

GREER: It's no longer just the material properties that dictate the structure. We now have this concept of architecture and size which are tunable design parameters which have never existed before. 

SNOW: Nanomaterials just billionths of a meter in size teaching us to expect the unexpected when it comes to architecture and design.

Close NBC Learn

FILTERING

If you are trying to view the videos from inside a school or university, your IT admin may need to enable streaming on your network. Please see the Internet Filtering section of our Technical Requirements page.

DVDs AND OTHER COPIES

Videos on this page are not available on DVD at this time due to licensing restrictions on the footage.

DOWNLOADING VIDEOS

Subscribers to NBC Learn may download videos and play them back without an internet connection. Please click here to find out more about subscribing or to sign up for a FREE trial (download not included in free trial).

Still have questions?
Click here to send us an email.

Close NBC Learn

INTERNATIONAL VISITORS

The Science of the Olympic Winter Games videos are only available to visitors inside the United States due to licensing restrictions on the Olympics footage used in the videos.

FILTERING

If you are trying to view the videos from inside a school or university, your IT admin may need to enable streaming on your network. Please see the Internet Filtering section of our Technical Requirements page.

DVDs AND OTHER COPIES

The Science of the Olympic Winter Games is not available on DVD at this time due to licensing restrictions on on Olympic footage.

DOWNLOADING VIDEOS

Subscribers to NBC Learn may download videos and play them back without an internet connection. Please click here to find out more about subscribing or to sign up for a FREE trial (download not included in free trial).

Still have questions?
Click here to send us an email.

Close NBC Learn

Choose your product

NBC Learn K-12 product site
NBC Learn Higher Ed product site

For NBC Learn in Blackboard™ please log in to your institution's Blackboard™ web site and click "Browse NBC Learn"

Close NBC Learn

If you have received a new user registration code from your institution, click your product below and use the "Register now" link to sign up for a personal account.

NBC Learn K-12 product site
NBC Learn Higher Ed product site

For further assistance, please contact our NBC Learn Support Team and we'll be happy to assist you.

Start Your Free
day
Day Trial!